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SUMMARY

Dimensionless elastic fracture mechanics (DEFM) - the nondimensionalized
counterpart to linear elastic fracture mechanics (LEFM) - predicts size-
independent strengths for geometrically similar specimens. This is in contrast
to LEFM which has that the stress at fracture reduces as the inverse square
root of the in-plane scale factor. It is shown that neither agrees with the
data, irrespective of how brittle material response is. Used together with
judgement, conceivably a conservative procedure for making strength size
predictions is possible. However, both are essentially inadequate, since they
lack valid underlying physical reasoning and, even as merely empirically based
approaches, are short of sufficient accuracy to be reliable in practices. There

is a need, therefore, to critically examine the very foundations of elastic

fracture mechanics.
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INTRODUCTION

Being able to predict the strength of geometrically-similar cracked
specimens of different sizes or scales is a basic requirement for success for
any fracture mechanics technology. The prediction contained in LEFM is that
the strength reduces as the inverse square-root of the scale factor in the
plane of the crack. To see this, consider the example of a pair of scaled
single-edge-cracked specimens shown in Fig. 1. Herein Specimen 1 is a strip

of indefinite length yet finite width W, weakened by a crack of length a, and

subjected to a remote uniform stress y3 while Specimen 2 is also of indefinite
length but has width AW, crack length ra, and applied stress 0y Thus x is the

in-plane scale factor. For Specimen 1 at fracture, LEFM has
*
KI =0, vna f(a/W) = Kes

where KI is the stress intensity factor in Mode I, f(a/W) is a finite width
correction factor, KC is theimateria] fracture toughness, and the asterisk !
atop o, serves to distinquish it as being the applied stress at fracture.
Similarly for Specimen 2, provided it is comprised of the same brittle

material, at fracture

*
KI = o, vria f(ra/aW) = Kc,
whence
* *
01/02 = /A_c (1)

Given that the underlying continuum mechanics does scale, the size effect
evident in (1) is somewhat curious and stems from the choice of the stress
intensity factor as the parameter governing brittle fracture. The question
*i examined in this research program is how appropriate is such an absence of

scaling.
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Fig. 1. Scaled pair of single-edge-cracked specimens
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The view at the outset of the program was that response should scale
unless there are microstructural factors and accompanying lengths involved. ‘
To this end, we form dimensionless elastic fracture mechanics simply by

replacing KI by EI’ the dimensionless stress crack factor. More precisely,

in the previous example, we define
Ky = Kp/oy W = JaaZi f(a/W),

bﬁ for Specimen 1, and assume fracture to be controlled by a material fracture

Ll

stress, Ocs so that, at fracture

v

*- -
o KI =0o.-

Similarly for Specimen 2,

. o;/;KE7TW f(xa/2H) = o

C

a fracture, whence

0)/oy = 1 (2)
That is, the strength scales in the dimensionless version, and it is expected
that (2) in fact holds unless there are microstructural size effects. With
significant caveats, this view remains the same in the 1ight of the physical
evidence examined. The limited role, though, that either LEFM or DEFM can play

in predicting strength size effects is now understood more fully. We explain

why in what follows.

OVERVIEW OF RESULTS OBTAINED IN RESEARCH PROGRAM

One of the first sets of test performed within this program to see which

of (1), (2) best applies was on a model material - Xerox paper embrittied by

P
r_.
’.
B
r'.‘
b:._
>

baking. These supported (2) over (1) (refer original proposal). Subsequently
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a more comprehensive set of tests on scaled single-edge-cracked specimens made

of the same mode]l material have been undertaken and reported in Kondo and
Sinclair [1] (copy attached as Appendix 1). In [1], the material is demon-
strated to be extremely brittle in good accord with the assumptions underpinning
elastic fracture mechanics, and some 244 individual tests are involved enabling
the effects of scatter to gauged and controlled. The results found are

summarized below.

Table 1. Fracture stress ratios from [1]

Scale factor, Mean ratio, 95% confidence
\ 0y / o limits
1.5 1.011 0.928-1.094
2.0 0.994 0.923-1.065
3.0 1.001 0.910-1.092
4.0 1.047 0.994-1.100

These results demonstrate statistically significant differences between actual
physical behavior and that predicted by LEFM, (1), while admitting the possi-
bility that (2) holds within scatter.

Discussion of these results with members of the fracture mechanics
community [2] lead to our being directed towards references containing data
such that the converse was true, i.e. (1) was supported over (2). The most
convincing of such references was the paper by Lubahn and Yukawa [3], and in

particular, Irwin's discussion [4] of the same. There, for a wide range of

....................................................................................................
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scale factors, very good agreement with LEFM (1) is exhibited, although the
specimens are not perfectly scaled with respect to notch acuity. Too, the
response for the most part is quite ductile with the yield region typically
being considerably in excess of 2% of the crack length, the limit usually
regarded as demarking brittle from ductile behavior (cf. ASTM standards for
plane strain fracture toughness testing [5]). This contrasting behavior
nonetheless motivated two activities: carrying out our own set of tests on a
more ductile material and simultaneously performing an extensive literature
search for data bearing on the issue.

The results of the first activity for aluminum sheets are presented in
detail in Keremes and Sinclair [6] (attached as Appendix 2). In summary, the

60 double-edge-cracked specimens gave:

A = 3, o;/o; = 1.014, 95% confidence limits = 0.998-1.029.

Thus a physical demonstration of support for (2) over (1), the opposite to

the trends reported in [3]. Clearly the situation does not have one simple

answer.
An answer of sorts is furnished by the review of some 300 references

containing strength size effects data (see bibliography [7], copy attached

as Appendix 3). From these references, 100 odd independent sources can

be drawn which contain strength dependencies for truly in-plane scaled

cracked specimens (with thickness effects controlled). The data from these

pertinent references are analyzed at some length in Sinclair and Chambers [8]

(Appendix 4). In essence the data show that neither (1) nor (2) holds,

irrespective of whether the tests are for very brittle response or quasi-

brittle response, for plane strain or plane stress, for valid KIC testing

or not, etc. Occasionally the size independent response (2) is found:

............................

......
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far more often there are microstructural size effects so that there is a

reduction in strength with size, the same trend as in (1), yet seldom are
such effects even roughly tracked by this simple formula. The situation

is too complex for such naive predictions (1), (2) of size dependence

(independence) to be appropriate.

A partial explanation as to what is going wrong in the classical arguments
that linear elastic fracture mechanics is founded on - essentially the

thermodynamic argument of Griffith [9] - is given in Sinclair [10] (Appendix

e oo

5). A possible explanation of the data itself, based on an extension of that .

W Ay

first given by Weiss and Yukawa [11], is given in Sinclair [12] (Appendix 6).
Both [10], [12] are at a stage that might best be termed ongoing research at
this time. Their full development was not intended to be a part of the
one-year research program for which this is the final report, and thus it is
not appropriate to discuss them in any detail here. What can be said, however,
is that size effects are almost certainly due to microstructure and consequently can
be expected to differ from one material to the next, even when response is
brittle. Further, for a specific material, they can depend on size itself,
typically decreasing with increasing size. Thus there is no one formula

like (1) with a single exponent (there one half), but a variety of different
exponents which are both material and geometry dependent themselves. Given
this far more complex character, (1) is quite inadequate, and the idea that

(2) applies unless there are microstructural effects probably true but largely
useless. We offer some concluding remarks in the light of these observations

next.

CLUCLUDING REMARKS

The prediction of strength size effects in fracture mechanics using
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either LEFM or DEFM is so naively simple as to be manifestly incomplete.
Accordingly both can lead to predictions that are inaccurate to the point
of not being acceptable in engineering. Moreover such errors are not necessarily
conservative. For example, LEFM is typically nonconservative when testing a
specimen larger than the size of the intended application, a situation that
can certainly arise in practice, and DEFM is nonconservative in reverse
circumstances.
I practice, then, it is preferable, if not necessary, to test on the
same size 3cale as the application. In the event of this being impractical,
the following strategy might be adopted. For the most part, the size effects
predicted by LEFM are in excess of those for the actua) data. Hence when testing
small and applying big, LEFM can be used to estimate the reduction in strength
and usually will do so conservatively. On the other hand, when testing big and
applying small, the LEFM prediction can greatly exceed the strength increases
in fact realized. Here, though, it would appear that strength seldom decreases
with decreasing size. Consequently, using DEFM will generally be conservative.
A caution on the use of the above is in order. There is really no physical
reasoning underlying the scheme; it is merely based on observation of the
data. And this data is not always confined within LEFM's prediction of size
effects and the size independence of DEFM, so that there is physical evidence
of the strategy being nonconservative. Some judgement is therefore required
in implementing this essentially empirical approach.
On a more fundamental front, there is reason to be concerned about the
very basis of fracture mechanics. These concerns arise because there exist
several hundred test results for appropriately brittle behavior not agreeing

with the LEFM prediction of strength size effects (see [8]). Every one of

.“c -
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these represents data establishing a variation in fracture toughness with
size. It follows that fracture toughness is demonstrably not a material
property. Thus the use of the stress intensity factor as the parameter in

and of itself controlling brittle fracture needs serious examination.
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of Mechanical Engineering at Carnegie-Mellon University and with D.A. Glasgow
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AND SEMICIRCULAR NOTCHES IN A SINGLE EDGE

M. Kondo and G.B. Sinclair

Report SM 85-5 March 1985

- Department of Mechanical Engineering
o Carnegie Institute of Technology
Carnegie-Mellon University
Pittsburgh, Pennsylvania




AR S I B st b gt S Hv I e it R Eadh - Y S s 2 v N - - AR A S J0 S i Aen B AR i Aiar-Sele et ~ - AR o wad il etk Ack ol aal Al 4

STRENGTH SIZE EFFECTS FOR EMBRITTLED PAPER SPECIMENS
WITH CRACKS AND SEMICIRCULAR NOTCHES IN A SINGLE EDGE

INTRODUCTION

Strength size effects occur when two geometrically similar configurations
comprised of the same material but having different sizes fracture at different
applied stress levels. Such effects must be limited if the inferred physical
measures of stress increase due to the presence of cracks and sharp re-entrant
corners in Sinclair and Kondo [1] are to be meaningful. The primary objective
of the work reported here is to check for size effects in the model brittle
material used in [1].

In this connection we note that there are theories which predict size dependence
in brittle materials. For cracked geometries, linear elastic fracture mechanice

(LEFM) has

*

o;/oz = A, 1)

wherein o; (i = 1,2) are the applied stresses at fracture in two similar cracked

specimens, the second of which has its in-plane dimensions increased by the scale
factor A. Hence LEFM predicts a specific reduction in strength with increase in

size for all brittle materials with cracks. For general geometries, Weibull's

statistical approach [2] leads to
* x -1/m
0,/05 = (V,/V,) , (2)

where Vi is the stressed volume for Specimen i (i = 1,2), and m is a material
parameter. For m > 0, this also gives rise to a reduction in strength with in-
creasing size, but now different rates of reduction are admit*ed including the
possibility of size independence (m + =), Thus there would seem to be a real need

to check what size dependence if any exists for the model brittle material of [1],

.......
.........
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especially for cracked specimens.

This report describes three different sets of experiments carried out to
this end during the course of the last two years. The first of these examined
fracture stress ratios of single-edge cracks with scale factors of A = 1.5, 2, 3,
4 (performed in June, 1983), the second concerned more extensive testing of the
extreme (A = 4) of the first set (October, 1983), and the third looked at a
control set of single-edge semicircular notches with A = 4 (April, 1984). 1In
what follows we begin by discussing the experimental setup for all three sets in
Section 1, then close by presenting attendant results in Section 2 (complete

experimental data are furnished in the Appendix).

1. EYPERIMENTAL DESIGN

The model material employed in Sinclair and Kondo [1] is baked Xerox paper.
Details of the preparation of this embrittled paper and the fabrication and
inspection procedures for specimens made out of it are given in [1], together
with the reasons for its use, so that here we merely summarize the key aspects.

This model material has the attribute of readily enabling fabrication of
specimens at low cost and with little effort. Suitably heat treated it is very
brittle, thereby approximating well the linear elastic response up to the point
of fracture sought in [1]. Further its thinness ensures a two-dimensional stress
state but it is still sufficiently thick so as to prevent buckling. In all this
material represents good compliance with the properties sought in [1], yet also
should be one for which LEFM is most applicable.

The embrittled paper specimens for testing size effects are shown in Fig.1l
and have actual dimensions as in Table 1 (all are 9 inches long and 0.0035 inches
thick). Sets of each specimen type are prepared, inspected for surface nicks or
burrs, and checked for eveness of baking. Any not meeting standards are discarded
before testing. The remainder are pulled in a calibrated Hounsfield tensometer

and all fracture stress ratios recorded. The sample sizes tested are 77, 30, 30,
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30, 77 for » = 1, 1.5, 2, 3, 4 respectively for the cracked specimens, and 38 for
both A =1 and X = 4 for the semicircular notch specimens. Provided approximately
normal distributions of the fracture stress ratios result, sample sizes of 30 or

| larger enable the use of the Central Limit Theorem (see, e.g. Wine [8]; as a check

on this requirement histograms of the data are examined). Then the 95% confidence

limits in the mean fracture stress ratio, (o;/o;), can be approximated by (c;/o;)
* *
+ 1.96s//N, where s is the sample standard deviation in ol/o2 and N is the sample

size. In this way it is hoped to control the scatter sufficiently to resolve the

issue at hand.

Table 1. Specimen dimensions (in inches)

Crack length/

Specimen type Scale factor, A notch depth, a Width, b
Crack 1.0 0.2 0.8
Crack 1.5 0.3 1.2
Crack 2.0 0.4 1.6
Crack 3.0 0.6 2.4
Crack 4.0 0.8 3.2
Notch 1.0 0.3 1.2
Notch 4.0 1.2 4.8
2. RESULTS

The results for the fracture stress ratios for the different specimens are
summarized in Table 2. These show that the mean fracture stress ratios differ
from unity by no more than 5% and typically by around 2%. The scatter in the

experimental ranges is of the order of + 45% about the mean with a maximum deviation
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of 62% for the cracked specimens, while the range for the notched specimens is
close to + 20%. However, since the data are in fact approximately normally
distributed (see Appendix), the Central Limit Theorem can be invoked to in effect

restrict scatter to about * 8% for X = 1,5, 2, 3 and + 5% for A = 4 for the

cracked specimens, and to about * 3% for the notched specimens. Accordingly the

results represent a solid demonstration of strength stize insensitivity for the

model material of {1], even for cracked instances. !

Table 2. Fracture stress ratio results

P

Specimen Scale factor Mean ratio Experimental 95% confidence
type A (;§7;§3 range limits
Crack 1.5 1.011 0.612-1.539 0.928-1.094
Crack 2.0 0.994 0.680-1.513 0.923-1.065
Crack 3.0 1.001 0.722-1.622 0.910-1.092
Crack 4.0 1.047 0.617-1.536 0.994-1.100
Notch 4.0 1.015 0.851-1.250 0.983-1.047

Comparing the outcomes represented in Table 2 with the LEFM prediction (1),
we see, that despite the physical correspondence to the underlying assumptions

in elastic fracture mechanics, the data here are in clear disagreement. More

i precisely, (1) has oI/o; equal to 1.22, 1.41, 1.73, 2.00 for A = 1.5, 2, 3, 4
whereas experimentally we find (;§7;§) of 1.01, 0.99, 1.00, 1.05 respectively.
Moreover, for the last two scale factors, not even a single outlier in over

100 tests attained the value predicted by LEFM, while for all A, the experimental

* *
95% confidence limits excluded the ol/o2 of (1).

Turning to the Weibull model of strength size effects and fitting (2) to
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to the mean values in Table 2 yields m = 37, -115, 1099, 30 for A = 1.5, 2, 3, 4
for the cracked specimens and m = 93 for the notched specimens. These large and
varying values are typical of those found when strength response is size indepen-
dent to all intensive purposes and underscore the disagreement with elastic fracture
mechanics here (m = 2 in LEFM for the present geometries).

In sum, the strength size independence of the given model material required
for the study in Sinclair and Kondo [1] to be useful would appear to exist. This
size independence differs markedly from the size dependence for brittle materials

implicit in linear elastic fracture mechanics.
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APPENDIX

Here we give the actual experimental data for the fracture stress ratios
(Table 3) and histograms of the results for the cracked specimens (Fig. 2). The

results for the notched specimens conform more closely to a normal distribution

than those in Fig. 2.
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Fracture stress

. *
ratios, ol/o2

*

Notched
Cracked specimens specimens
~ N A
A =1, A =2 A=13 A =4 A =4 A =4 A =4 A =4
1.195 0.966 1.102 1.092 1.406 1.148 1.047 1.000
0.846 1.085 1.000 0.909 1.148 1.087 1.115 1.070
0.832 0.852 0.813 0.877 1.508 1.359 0.982 0.991
1.226 0.680 0.920 0.935 1.042 0.617 1.041 1.004
0.976 0.878 0.924 0.735 0.840 1.160 1.250 0.896
0.942 1.513 0.850 0.847 0.714 0.794 1.130 0.903
0.984 1.353 1.622 1.385 0.855 0.990 1.056 0.851
1.139 0.810 1.158 1.012 1.033 1.282 0.986 0.912
1.539 1.045 1.130 0.855 1.103 1.022 0.919
0.838 0.852 0.784 1.364 0.952 0.645 0.979
1.400 1.121 1.130 1.304 1.307 1.172 1.005
1.202 1.057 1.021 1.458 1.248 0.787 0.983
0.790 1.100 0.863 1.267 0.935 0.813 0.949
1.000 1.245 0.769 1.536 0.820 0.909 1.045
0.865 0.934 1.255 1.508 0.870 0.621 1.082
1.157 1.042 1.157 0.952 1.250 0.877 1.169
0.952 0.785 0.863 1.368 1.364 1.214 1.132
1.046 1.103 0.925 1.104 1.344 1.000
0.747 1.000 0.722 1.000 0.847 1.088
0.833 0.851 0.851 1.000 1.211 0.867
0.612 0.703 0.722 1.250 1.000 0.936
1.392 1.243 1.101 0.820 1.043 1.153
0.924 0.859 0.913 0.840 1.250 0.852
0.899 0.707 0.869 0.862 0.758 0.991
1.318 1.101 1.865 0.769 0.654 1.021
0.874 1.115 0.954 0.909 1.285 1.044
0.616 0.718 0.735 1.269 0.909 0.969
1.215 1.106 1.253 0.787 1.309 0.868
0.815 0.930 0.902 1.211 0.917 1.247
1.144 1.080 0.865 1.124 0.847 1.054
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Fig. 2.

Relative frequencies of fracture stress ratio data for

the cracked specimens (5 = (OI/OE))
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A PILOT EXPERIMENTAL STUDY OF SIZE EFFECTS
IN THE FRACTURE OF DOUBLE-EDGE-NOTCHED
ALUMINUM SHEET SPECIMENS

INTRODUCTION

Size effects occur when two different sizes of specimens having the same shape, material, and
loading configuration, fracture at different nominal stresses. In this connection, linear elastic
fracture mechanics (LEFM) implies that the ratio of nominal stresses at fracture between two
cracked specimens is equal to the square root of their scaling factor (), the so-called geometric
size effect. Thus

—= A, (n

. -
where g, 0,

2 being ) times as big as Specimen 1. Alternatively, a simple Weibull model [1] based on a

are the nominal stresses at fracture in Specimens 1, 2 respectively, with Specimen

statistical theory of fracture has that

a,. = (Y—t).”m (m > 0), (2)

7, vV,

where V , V., are the respective volumes of Specimens 1, 2, and m is a material parameter found
by experimentation. Equation (2) represents a means of fitting microstructural size effects. Both (1)
and (2) are in agreement with the general trend found in actual data, namely that strength
decreases with size. However, there are significant differences between these two: {1} has & fixed
dependence for all materials with this dependence being on in-plane dimensions alone, whereas (2)
has a size dependency which is material sensitive and which exhibits variations with both in-plane
and out-of-plane dimensions. The basis objective here is to experimentaily examine for selected
configurations whether (1) holds, (2) holds, both hold or neither,

Generally one expects the LEFM prediction, {1), to apply best when the response is brittle. Other
components of the research program here at C-MU examine the applicability of (1) in this case.
However, there exists claims in the literature (see, for example, Irwin's discussion of Lubahn and
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Yukawa [2]) which suggest that (1) holds even with ductile response. As a result we seek to
examine the validity of (1) here for a material which exhibits some ductility. There is an
extensive literature on this subject and a comprehensive review falls outside the scope of this

report. Nonetheless, it would be fair to say even on the basis of a limited review [3-7], that

SadhobooBibctton Bd ookt £ 3 i oo B

generally size effects do occur in ductile materials with significant stress concentraters, but that
these effects do not necessarily adhere to the specific size dependence of (1). This last though

may be attributable to scatter in the results. As a consequence a second aim of this experimental

i e Sa o

study is to control scatter sufficienty to resolve the issue as to which of (1), (2) is most

appropriate.

In what follows we first describe 8 set of experiments designed to meet our two objectives in

PR N S B T

Section 1, then present the attendant results in Section 2.

1. EXPERIMENTAL DESIGN ]

in this section we describe the reasons underlying our material selection and the manner in

which the tests are performed.

The selection of testing material is governed by the criteria of exhibiting significant ductility and !1
enabling reproducibility. A suitable material should thus have a plastic strain to elastic strain ratio
which is at least two at rupture in a uniaxial tension test. In addition, an appropriate material
must also allow reproducible results, either by having little inherent scatter or by readily
permitting a sufficiently large set of experiments to be performed which will in effect limit

scatter.

One material which has the potential of satisfying the above criteria is aluminum in the form of
thin sheets. This material can be expected to exhibit some significant ductility; simple tensile
tests on straight specimens serve to check this expectation. The thinness of the sheet material,
moreover, makes it easy, both from an effort and an economics viewpoint, to manufacture a large

number of specimens.

Unfortunately, when obtaining standard sheets it is not generally possible to scaie the thickness
of the specimens in unison with the rest of the dimensions. As a result we choose to use 3
single sheet thickness and thereby reduce variations from one manufactured roll to another,
Provided this thickness is small enough, a two-dimensional state of stress {(plane stress) should
still be induced. Observe that when thickness is not scaled, the possibility of buckling is
increased with larger in-plane dimensions; thus, the largest specimen is the critical specimen in

-*' Tt e
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which to prevent buckling. To minimize the possibility of buckling in the largest specimen, the
thickest freely available commercial sheet is chosen which has a thickness of 0.00093 inches.
This selection serves to sufficiently limit buckling here and is still 10° times smaller than the

smallest of the in-plane dimensions so that a two-dimensional geometry is obtained.

A Hounsfield Tensometer with a light beam spring is used to test the specimens. A checked
spring balance is used to calibrate the force measurements of the tensometer. Fine sandpaper
placed on the testing grips prevents the specimens from slipping. The grips themselves slide on

bars which are dusted with powdered chalk to reduce friction.

A geometric scale factor of 3:1 (A = 3} is chosen for the specimens since their size range is
restricted by the testing eguipment. This scale factor though is large enough to provide
observable results between the two sizes of specimens should a size effect exist. Three different
shapes of notched specimens are tested (Fig. 1). The two circularly notched specimens serve as a
reference for the key geometry in the experiments which is the cracked configuration pair: the
sharply notched specimens provide an intervening geometry. The specimens are all double-edge-
notched to prevent the bending which would occur in single-notched specimens.

When making the specimens the longest dimension is always parallel to the rolling direction of
the aluminum foil, After being manufactured the specimens are examined for defects. All of the
specimens judged to be defective are removed from the specimen pool prior to testing. The ends
of the accepted specimens are then placed into the grips of the tensometer and loaded until
fracture occurs. A total of 30 specimens are tested in the tensometer for each particular size and
shape of specimen in Fig.1 and a8// results found included. This number of tests enables the use
of the central limit theorem which recognizes that more measurements enabie us to know the
value of the mean better. The theorem in effect states that the standard deviation jn the mean is
equal to the population standard deviation divided by the square root of the sample size, Given a
sufficiently large sample size we can reasonably approximate the population standard deviation by
s, the sampl/e standard deviation: then the approximate 95% confidence limits for the mean fracture

stress, o, are o'* 1.96s//N, where N is the sample size. It is generally accepted that "sufficiently
large” in practice means N230 providing that the distribution is not of an unusual shape (see Wine
[8])). Histograms are used to check this last point.

2. RESULTS

Here we first present our results and then comment on their relation to existing theories.
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Fig. 1 Scaled test specimens (w = 4,50 in.)
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A uniaxial stress (o) versus strain (¢) curve for unnotiched straight aluminum sheet specimens is
shown in Fig.2. Here o, ¢ have been normalized by their respective values 8t yield, o, €. This
graph has a ratio of 6.3 for the strain at fracture (e‘) divided by the yield point strain (¢ ). This

value is less than that for bulk aluminum because of the cold-work involved in sheet production
and typically (ess than values for aluminum atloys and mild steel: nonetheless it represents a

:~‘ marked degree of ductility and we can expect the net section stress to exceed the yield stress in
our notched specimens - the hallmark of significantly ductile response for such configurations.

Indeed this is found to be the case for all notched specimens with typically the ratio of nominal
stress to yield stress being 1.8 and ranging from 1.67 to 1.91.

With the thickness used buckling as expected is limited. Only the largest specimens exhibit
perceptible buckling. This occurs at the ends of the specimens near the grips in the form of a
sinusoid of the order of 3 cycles with an amplitude of about 0.5% of the width., There is buckling
in the vicinity of any of the notches. '

The results of the notched tensile tests are summarized in Table 1. The results show that all
three specimens are basically size independent. While the scatter reflected in the actual untreated
experimental ranges might permit an appreciable size effect to be present yet remain undetected,
the 95% confidence limits indicate no such possibility with size effects restricted to no more than
3%. These 95% confidence limits are based on the central limit theorem, the use of which is
justified by the histograms in the Appendix.

Table 1. The effect of size on the mean fracture stress ratio.

Specimen (o,'laz') Raw experimental 95% confidence limits
range

- Double-edge crack  1.014 0.924-1.100 0.998-1.029

% Double-edge deep  1.010 0.932-1.139 0.992-1.027

3 circular notch

) Double-edge semi- 1,008 0.803-1.096 0.983-1.026

[ circular notch

b -

.................
---------
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To all intensive purposes, the three types of specimen are size independent. Notched pure
aluminum bars tested in Klier and Weiss [9] also show no noticeable size effect which is
consistent with the present data. The results do indicate a small increase in the fracture stress
with a decrease in size. As remarked earlier, an increase in strength with decrease in size is
consistent with other size effect phenomena. It is interesting to note that although the size effect
is small it is similar for all three types of notches.

Although we have ductile response here so that LEFM is not appropriate, we can compare with

the LEFM prediction (1) to see if it extends into the ductile region as has been suggested by other
investigators on occasion. Clearly (1) cannot in general admit to such an extension since here we
demonstrate that it is violated, and statistically significantly so. Moreover, the presence of size
; effects of type (2) cannot alleviate this contradiction.

!

b

).

Applying the simple Weibul model (2} to the three specimens gives a range of values for m from
148-276. The high values of m show that the specimens are practically size insensitive. 1t should
‘. be noted that the value of m with such small size effects is uncertain since in this range of size
effects the value of m can change appreciably with a small percentage change in the d"/az' ratio.
Even so, this value is markedly different from that contained in effect in LEFM (ie. an m of 2
here), underscoring that the LEFM size prediction does not apply here.
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Appendix

Here we furnish the details of the experimental data.
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Table 2. < Strength ratios (o 1'/02" for different specimens shapes.

Specimen Double-edge Double-edge deep Double-edge deep
number crack specimens circular notch specimens semicircular notch specimens
1 0.950 1.048 1.017
2 1.038 1.042 0.990
3 0.924 1.016 1.094
4 1.091 1.139 1.032
5 1.025 0.977 1.042
6 1.001 0.938 1.058
7 1.025 1.034 1.073
8 0.979 1.034 1.058
9 1.017 1.015 0.972
10 1.066 1.077 0.929
1M 1.016 0.973 0.990
12 1.071 1.044 1.018
13 0.976 0.951 1.087
14 1.018 1.064 1.056
15 1.064 1.008 0.995
16 1.022 0.932 1.096
17 0.961 0.991 1.000
18 0.976 0.947 0.961
19 0.984 0.952 0.852
20 1.028 0.951 1.037
21 0.987 1.021 0.938
22 1.049 1.002 0.903
23 1.028 1.018 0.952
24 0.958 1.076 1.020
25 1.061 1.063 1.021
26 0.976 1.027 0.967
27 1.100 0.973 1.037
28 0.979 0.968 0.998
29 0.993 1.030 0.951
30 1.043 0.981 0.986
g e e L e T L N o T S T T N
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' Histograms of the data in Table 2 are presented in Fig.3 as evidence that the data approximate a
norma! distribution permitting the use of the central limit theorem. As further evidence, the
'standard deviations for the first 15 and second 15 specimens are calculated separately to see if
they are numerically consistent with asymptotically approaching a limiting value. These results are
given in Table 3 and support the use of the sample standard deviation as an estimate of the

corresponding population values.

Table 3. Means and standard deviations of the experimental data in table 2.

Source Mean Standard deviation

Double-edge crack

1st* 15 specimens 1.017 0.0464

2nd 15 specimens 1.010 0.0414

All 30 specimens 1.014 0.0434
Double-edge deep circular notch

1st 15 specimens 1.024 0.0515

2nd 15 specimens 0.995 0.0432

All 30 specimens 1.010 0.0489
Double-edge semicircular notch

ist 15 specimens 1.027 0.0461

2nd 15 specimens 0.988 0.0490

All 30 specimens 1.008 0.0509
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A BIBLIOGRAPHY OF STRENGTH SIZE
EFFECTS FOR CRACKED SPECIMENS

PREFACE

The references gathered here are with a view to providing strength test data for
cracked or sharp notch specimens which have their dimensions in the plane of the
crack scaled. The first table lists all sources with such in-plane scaling which are
used in a survey of this type of data”™: the remaining tables are all references with
size-effect strength data consulted in the course of compiling Table | but not
included therein for various reasons. For Table |l, most references either could not
_be shown to have a// dimensions effectively scaled or presented data aiready

contained in the references of Table I. For Table 11, most results in references were

affected to some extent by out-of-plane or thickness effects, since either specimens
did not have their thicknesses scaled in concert with their in-plane dimensions or did
not consistently maintain a state of plane stress or strain (there are some references, ‘
however, which are also listed in Table | because they had both 'in-plane and l
thickness size effects). For Tabie IV, all sources either involved specimens with i
notches whose acuity was not judged to be sufficient to qualify as cracks or entailed

specimens with no notches whatsoever. It should be emphasized that neither Table r
Il nor Table IV approach being comprehensive surveys of their data types - they are
simply the test results of their respective natures encountered in assembling Table

I. Each table is arranged siphabetically by author (s).
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APPENDIX 4

STRENGTH SIZE EFFECTS AND FRACTURE MECHANICS:

WHAT DOES THE PHYSICAL EVIDENCE SAY?

G.B. Sinclair and A.E. Chambers

Department of Mechanical Engineering, Carnegie-Mellon University
Pittsburgh, PA 15213, U.S.A.

Abstract - Being able to predict the strength of geometrically-similar cracked
specimens of different sizes or scales is a fundamental requirement for

success for linear elastic fracture mechanics (LEFM). The prediction

contained in LEFM is that the strength reduces as the inverse square-root

of the scale factor in the plane of the crack: here we review how well this
prediction actually agrees with the ph&sical evidence. In particular we examine
agreement for materials and configurations exhibiting brittle responses - the
situations complying best with the underlying linear elastic assumptions in

the theory. The data shows that the agreement is not good, even in the most

brittle of instances.
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STRENGTH SIZE EFFECTS AND FRACTURE MECHANICS:

WHAT DOES THE DATA SAY?

G.B. Sinclair and A.E. Chambers

Department of Mechanical Engineering, Carnegie-Mellon University
Pittsburgh, PA 15213, U.S.A.

Abstract - Being able to predict the strength of geometrically-similar cracked
specimens of different sizes or scales is a fundamental requirement for

success for linear elastic fracture mechanics (LEFM). The prediction

contained in LEFM is that the strength reduces as the inverse square-root

of the scale factor in the plane of the crack: here we review how well this
prediction actually agrees with the physical evidence. In particular we examine
agreement for materials and configurations exhibiting brittle responses - the
situations complying best with the underlying linear elastic assumptions in

the theory. The data shows that the agreement is not good, even in the most

brittle of instances.
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INTRODUCTION

Everyday experience indicates that strength, or stress at fracture, does not vary
with size - this is reflected in the reporting of ultimate stress values for
materials in handbooks. However, when size is reduced below that normally en-
countered in uniaxial tension tests, increases in strength can occur. Such strength
size effects are especially prevalent in brittle materials. For example, in
Griffith's classical paper [1], the breaking stress of glass fibers increases by

70% on reducing their diameter by an order of magnitude, and increases by an

additional factor of 5 or so on reducing diameter by another order of magnitude.
E.f Clearly then, strength size effects can be considerable when they do indeed
occur, and they need to be taken into account in any theory attempting to predict

fracture in such cases.

Turning to the fracture of cracked specimens composed of brittle materials,

probably the most accepted theory for treating these configurations is linear

elastic fracture mechanics (LEFM). Implicit in LEFM, in the choice of the stress

intensity factor as the parameter governing fracture, is a strength size prediction.
To see this consider, by way of illustration, the scaled pair of single-edge-
cracked specimens sketched in Fig. 1. Herein Specimen 1 is a strip of indefinite

length yet finite width W, weakened by a crack of length a, and subjected to a

g
g
.

remote uniform stress oy3 while Specimen 2 is also of indefinite length but has
width AW, crack length Aa, and applied stress o,. Thus A is.the in-plane scale

factor and we ignore out-of-plane effects for the present. For Specimen 1 at

fracture, LEFM has
_ *
. Kp = 0, Yra £(a/W) = K_,
i where KI is the stress intensity factor in Mode I, f(a/W) is a finite width

correction factor, K. is the material fracture toughness, and the asterisk atop

g, serves to distinguish it as being the applied stress at fracture. Similiarly
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for Specimen 2, provided it is comprised of the same brittle material, at fracture
*
K; = o, /nia f(la/IW) = K.»

whence

*

oI/oz = /3. (1)

The strength size effect prediction of (1), sometimes termed the geometric size
effect of LEFM, is certainly in agreement with general trends, viz., strength
increasing with decreasing size. The question that arises, though, is how well
it in fact agrees with physical actuality.

The question is important on two counts. First, the ability to predict when
changes are limited to scale alone is quite conceivably the easiest of tests a
theory can face, and therefore virtually an essential prerequisite to satisfactory
performance in more complex contexts. Second, appreciable changes in size are
encountered in engineering. For instance, at the Government Products Division
of Pratt and Whitney Aircraft Corporation, tests on 6-inch wide panels have been
used to infer what is happening at the necks in '"fir trees' which hold blades
in high pressure turbine disks, and which can be as small as 1/16 of an inch in
width. While there is more than just a size change entailed in this specific
application, the scaling factor involved is of the order of 100, In sum then,
accurately accounting for scaling is a basic capability for linear elastic fracture
mechanics to possess, and one which is required in practice.

To answer the question we have reviewed the open literature,
drawing on data furnished in papers in a variety of journals, in ASTM Special

Technical Publications and proceedings of other conferences related to fracture

mechanics, and occasionally in reports. In performing this search we have been
fortunate to be directed to a number of references that provide some experimental

support for (1), all of which we of course include here. We have attemped to

be as comprehensive as we can in supplementing these references, but nonetheless
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are confident that there remain still further references which we have not, to

date, found - we would appreciate readers drawing our attention to any such
oversights and be happy to include them in an updated version of the present

study. We do not anticipate, though, that the amount of pertinent data outstanding
is sufficient to significantly alter the overall assessment made on the basis of
the extensive survey summarized here.

In answering the question we have also placed the main emphasis on physical
data featuring brittle response, since such phenomena are in greatest accord with
the assumptions in linear elasticity and consequently can be expected to agree
with LEFM best. We have, in addition, tried to isolate the issue as much as
possible, by selecting data as close to perfect scaling as can be drawn from a
given source and by taking strength estimates from load data wherever we were

able, thereby avoiding practically all analysis. And in processing the data we

have made an effort to apply reasonable data reduction procedures in a consistent
manner. In this way it is hoped to focus simply on what the physical data has to
say about the applicability of the IEFM strength size prediction.

In what follows we begin by describing the ground rules for including data
relevant to the issue and how such data are then classified. Next we provide
the results in summary form (greater detail can be found in the Appendix), and

discuss how well theory and practice agree. Finally we offer some concluding

remarks on the consequences of the comparison.

SURVEY GUIDELINES +

In this section we start by defining strength. We then place limits on
any deviations from scaling, including bounds on thickness effects. With this
last in place we can distinguish between brittle versus ductile behavior. In )
all, the intent here is to furnish a reasonable set of rules which can be systemat-

ically applied to filter out data not enabling a fair appraisal of the LEFM size




prediction as a result of not conforming to underlying assumptions: we do this
either by excluding such data altogether or by separating it into other classes
wherein good agreement with fracture mechanics is not necessarily expected.

We define strexzth as the nominal, elastic, net section stress, under monotonic

quasi-static load.ng, at the onset of Mode I crack growth (or further crack

growth in the case of flaws that have been previously grown by cyclic loading).
With truly brittle response this stress level is usually equal to that required
for total fracture; with less brittle behavior it varies somewhat, loads at a 5%
secant offset in the load-displacement record being generally preferred but..others,
such as at "pop-in', being taken when the 5% offset stress is not available. We
choose the stress at this point rather than at its maximum because response is
likely to be more linear elastic. In the event, however, that only maximum load

levels are provided in a given source, we include such data but note the relaxation

of our definition. We do this in the interests of admitting as much data as possible

that bear on the issue at hand. The attendant hierachy of preferred sorts of in-

formation for deducing strengths from then is: load and geometry, including final

pre-crack length, at the onset of crack growth; gross stress then net section Stress at

the same point; fracture toughness (or stress intensity factor) at crack initiation;

resistance curves with discernible proportional small crack growth; followed by
the same first four quantities, in ordef, at maximum load. Only the higﬁest
available information type in this ranking is used. No attempts are made to
infer strengths from load-displacement products, or their equivalents, unless
load or stress alone can be determined.

Preliminary to prescribing limits on departures from perfect scaling, we
need to define what we mean by a erack and describe the range of acceptable
environmente. Here, with respect to a crack, our first choice is a specimen
with a fatigue pre-crack. Again, however, with a view to including all pertinent

data, we admit notches whose acuity is such that their local root radius of
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of curvature, r, is an order of magnitude less than their total notch depth or

crack length, a, Z.e. noteh acuity must satisfy
r/a < 1/10. (2)

Too, we record whenever the situation is not our ideal of pre-crack and compare the
two classes of "“cracks'. Regarding environments, with a view to maintaining as
much control as possible, we do not allow data for any that are more corrosive than
air. On the other hand some variations in temperature are countenanced, since low
temperature response can be quite embrittled and accordingly in good agreement
with LEFM assumptions. When comparing scaled specimens at other than room
temperature, we allow differences in temperature between sizes of up to 5°K, with
the proviso that the specimen having the higher stress-intensity-factor value at
failure not be at a higher temperature. This stipulation is so as to avoid mixing
temperature transition behavior with size effects.

Turning to scaling, our first requirement is that specimen type be identical,
e.g. a compact tension specimen of one size can only be compared with another
compact tension specimen of a different size. No exceptions to this restriction
are permitted. Our second requirement is that, if cracks are in fact sharp notches,
the notch acuity should scale (r/a ¢onstant) or at least r should remain constant.
Data where r decreases with increasing scale factor, A, are excluded. Our third
requirement is that the crack length, a, to width ratio, W, scale to within 10%.

That is
0.9 5_(a1/w1)/(a2/w2) < 1.1 (3)

where subscripts fefer to specimen. The only éxception to (3) entertained is
when a/W for a test piece of one size falls between two a/W for a test piece
of a second size and the latter are within + 20% of the former; then we inter-
polate between the pair of a/W.for the second size. Our fourth requirement
concerns the other in-plane dimension of a specimen - length, span, ete. This

should scale sufficiently so that a stress intensify factor calculation for the
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different sizes remains unaffected by any changes in its value relative to W.
Typically this just means that specimens whould preserve a length which is as long
as, or longer than, W. And our fifth requirement in essence is that thickness
effects are to be excluded. One means of ensuring this is to have the thickness,
B, scale in concert with A; then whatever combination of plane stress and plane
strain states is present in one size is conserved in the next. Alternatively test
pieces can maintain a state of plane stress or plane strain exclusively by having
a fixed B which is relatively small or large, fespectively. To this end we define,

in a global sense, plane stress as being when
B/a < 0.1, (4)
while plane strain is taken as being when
B/W > 0.5, B/a > 1.0. (5)

The plane stress range is so that the thickness is an order of magnitude less
than the smallest of the in-plane dimensions while the plahe strain range is

motivated by standard specimens in plane strain fracture toughness testing. Clearly,

for a fixed B as a, W vary, (4), (5) may exclude quite a number of configurations.
To reduce this possibility somewhat we relax (4), (5) to B/a < 0.3 and B/W = 0.45,
B/a > 0.9, respectively. . As previously, we separate data that is only admitted

by virtue of this relaxation. For convenience we classify specimens with scaled

B as plane stress or plane strain depending on which of (4) or (5) they are closest
to.

We now consider the crﬁx of the applicability of linear elastic fracture
mechanics - namely how brittle the response is. Here by brittle we mean in an
engineering sense of limited plastic flow rather than from a materials viewpoint of
relating microstructural fracture mechanisms. As a result we need to estimate

the extent of the yield region induced at failure. In lZeu of anything obviously

superior, we take the classical measures of yield region radius, Ty» to this effect.




8
These are, for plane stress
2
_ 1 K1y
Ty = 3n ;—) , (6)
Y
and for plane strain (from Irwin [2])*
2
_ 1 ,Kg
TY-6—1;'.0__. (7)

In (6), (7), K is the Mode I stress intensify factor evaluated at the onset of
crack growth, oy the uniaxial yield stress. The factor of 3 difference between (6),
(7) is the real reason for our earlier concern to distinguish between plane stress
and plane strain. Once Ty is calculated with the appropriate equation, we regard
the response as being brittle provided Ty is less than 2% of the total crack length,
irrespective of whether the specimen in question is in a state of plane stress or

plane strain. That is, the brittle regime requires that
ry/a < 0.02. (8)

This is essentially the same limit as is prescribed in standards for fracture
toughness testing. For specimens with more extensive plastic flow than that permitted
in (8) yet short of gross yielding, we term the response brittle-ductile if Ty is

less than 5% of the total crack length, viz., the brittle-ductile regime has
0.02 < ry/a < 0.05. (9)

This transition class is regarded as one it would seem natural for the practicing
engineer to attempt to extend the applicability of LEFM into, given satisfactory
performance in the brittle regime. This view is supported to a degree by the

large number of arti-les in the literature that report fracture toughness values

-in the brittle-ductile regime, implying some sort of use of fracture mechanics is

contemplated therein. All other responses are taken as being ductile, Z.e. the

ductile regime occurs when

+For a recent review of the ability of (6), (7) to be representative of yield region
extent see [3], which indicates that, given the wide variety of configurations en-
countered in testing, they do perform remarkably well.
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ry/a > 0.05. (10)

We include data from specimens in this range simply for completeness.
In applying all of the foregoing, considerable effort is made to avoid

comparing apples with oranges. For example, if we have two fatigue-cracked

compact tension specimens comprised of identical materials, each having a counter-
part which is perfectly scaled by a common factor A yet huving different a/W, we

* *
keep the ratios of the strengths, 01/02, apart. Similarly we do not compare speci-

mens in the brittle regime with those in the brittle-ductile. On the other hand,
since the choice of 0.05 in (9), (10) ;s somewhat arbitrary, we let it shift to
as high as 6.08 for a last size in a set that is otherwise brittle-ductile, and
conversely to drop to 0.04 for one size in a ductile set. Typically too, we try

to err on the side of classifying response as more ductile than it is rather than

less. Within these separate classes, for two different sizes we form all possible

quotients of the strengths for the small specimen divided by those for the large,
oI/c;, note the range of these ratios and calculate their mean. In this fashion
we hope to, if anything, overestimate the extent of scatter in the data by using
extremums, yet reduce the effects of scatter by using means. We also take down
the total number of tests involved in producing a mean strength ratio.

Clearly the choice of the above procedures is not unique, merely sensible.
Other reasonable approaches certainly exist. A number of these may well fall
within the concessions made on our most stringent requirements. Thus by monitoring
any differences between the strength size dependence of data complying with our
preferred constraints and that for data only admitted as a result of a relaxation,
we should be able to assess what, if any, effects such altermative treatments would
have. The expectation is that for these and other rational data reduction schemes,
while they would give rise to differences in detail for individual comparisons,

they would nonetheless yield the same overall appreciation of how well the LEFM

size prediction works if consistently applied to all the physical evidence.
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We apply our set of rules to every one of the references with strength size
effect data encountered in our search. Even on the basis of our more generous
restrictions, this excludes the data from some because of not scaling properly,
not isolating thickness effects, not having sufficient notch sharpness, ete.

Too, there is quite a bit of duplication in the reporting of data, e.g. the
well-known appraisal of fracture mechanics by Weiss and Yukawa in STP 381, [4],
actually discusses data first furnished elsewhere. In these cases we only cite
the original source.+ A listing of all of the around 300 references checked may
be found in the bibliography [5]; the 100 odd references determined as independent
sources of admissible data are listed alphabetically by author here [6-136].. We
next look to examine the outcome of comparing the data from these sources with the

strength size prediction of fracture mechanics.

RESULTS AND DISCUSSION

In this section we begin by reviewing the ramifications of our varying admission
standards for data and grouping it accordingly. We then display plots of strength
ratio data versus scale factor, together with the LEFM prediction of the same.
Finally we introduce measures to quantify agreement and discuss their implications.

Considering the various relaxations in requirements we observe that, for the
most part, they are of no consequence because data fall within our most stringent
requirements and sharpest classifications. Regarding each of those instances in
turn where there are exceptions, we first remark that strength data based on
maximum loads/stresses tend to exhibit less of a size effect than that associated
with strengths at the onset of crack growth. However, where size effects are
distinct for the two strength types, the maximum criterion usually involves large

stresses with attendant extensive yielding. Consequently nearly all such data

o +If the original source is an in-house report with substantially the same authorship

® as a version in the more open literature, we give the latter because of its greater
S accessibility. On occasion, when we have not managed to obtain a copy of an original
- source, we list it together with ‘the reference reporting its data.
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falls in the ductile regime and we admit them as such. Second, re notch acuity,

we find there is some but little effect due to notch sharpness provided (2) is met;
typically notches with less acuity display less in the way of size effects but there
is no clear distinction in the range ‘allowed by (2). Hence we use data from both
notches and fatigue pre-cracks but, if in fact it is not from the latter, note the
notch acuity in the detailed tables in the Appendix. Third, concerning the extended
ranges of a/W similarity and B/a, B/W values for avoiding thickness effects, we find
no significant differences in strength size effects between data fulfilling our
strictest requirements and that only complying with our more generous limits. As

a result we combine the two types in what follows. In contrast, there can be
variations in strength size effects for sets of scaled specimens that have

distinct a/W but are otherwise the same. Consequently we continue to segregate such
data in computing mean 01/5; and note when this occurs in the tables in the Appendix.

These tables give associated sources and are broadly classified as to material

type; the bulk of the data presented in the remainder of this section are for
steels and aluminum alloys.

Distinguished as to plane strain or plane stress and by brittle, brittle-ductile,
ductile regime, Fig. 2 shows test data for strength ratios, oI/o;, plotted versus
scale factor, A. The size of the dots reflects the number of tests involved
Also shown is the LEFM prediction (1). Agreement is not great. Even in a best
fit sense, the LEFM prediction is generally astray. More precisely, using least

squares weighted by the number of tests involved to determine k in
*
ol/o = A, 11

leads to: for plane strain brittle, brittle-ductile, ductile, k = 0.37, 0.35,
0.22 respectively while for the corresponding regimes for plane stress k = 0.49,
0.41, 0.22 (ef. 0.50). The only category in good agreement with LEFM is plane stress

brittle, although naturally one would not expect matching of LEFM and the data in the

...........




0.0

Fig. 2.

Kl DA B S A % A S ahe e AR Thh mile e med Aok SallAd Ad Al ol Gd At e n e A e

12

Aacaa |

LEFM prediction

e e
-

Comparison of test data with LEFM predictions of strength size dependence:

(a) plane strain, brittle

. " SR e T T N e
LN T RN S T RN SR
LYY ST, WL, VK, PR W, A 3




[ A Al A O s R VR S 64 |

13

LEFM prediction

Fig. 2. Comparison of test data with LEFM prediction of strength size dependence:
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ductile regime. The real point is that no one curve fits any of the data distributions
in any of the plots in Fig. 2 well. And this shortcoming cannot simply be dismissed

as due to scatter because a significant proportion of the values plotted represent
means themselves and, moreover, in over half of the instances where ranges can be
calculated from the extreme values of cI/c;, these intervals do not even intersect

the LEFM prediction irrespective of how brittle response is. We next consider

means of quantifying the discrepancies between theory and actuality apparent in

Fig. 2.

One way of gauging the effectiveness of the LEFM strength size prediction is
to ask how often it does indeed predict the strength of one specimen given the
strength of another geometrically similar one. Thus we regard LEFM as providing
a good prediction if the data are within + 5% of (1), a useful prediction if
within + 10%. Table 1 summarizes the percentages of the data that fall within
either of these two ranges, the percentages being arranged under the same separate
classes as Fig. 2.+ In the light of Fig. 2, the unsatisfactory percentages in
Table 1 are not unexpected. As before, the ductile regime is worst, but of
course could be reasonably discounted in evaluating LEFM's strength size prediction.
Somewhat suprisingly, the brittle-ductile regime has higher percentages in some sort
of agreement with LEFM than the brittle regime. Nonetheless, neither is very
satisfactory with LEFM not being within useful agreement with about half of the
data. Furthermore, a lot of what agreement there is comes from limited changes
in scale (X < 2, when there is really very little to predict.

To expand on this last statement, Fig. 3 shows how the percentages with useful
and good agreement vary with scale factor. The exact histogram classes in Fig., 3
include their upper marks, and the data are drawn from the plane strain brittle

regime. Other data exhibit similar behavior. Evident in Fig. 3 is the falling off

+The percentages are weighted by the number of tests involved - no real changes
occur if this not done.




Table 1. LEFM strength prediction :

Thickness Material No. ‘of % within % within 4
classification response tests + }0% of + 5% of :
regime involved LEFM LEFM :
<
|
Plane strain Brittle 699 37% - 18% ,
Brittle-ductile 281 44% 23%
Ductile 1331 15% 5.5% “
Plane stress Brittle 103 44% 26%
Brittle-ductile 119 55% 40%
Ductile 663 20% 8.9%
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as A increases of the agreement of the LEFM size prediction with the data. Eventually
(A > 7), no data are within + 10% of (1). Although there are fewer tests for these
higher scale factors, there would seem to be sufficient to show some agreement if

indeed it were to be present (the numbers of tests involved within each class, and

upon which percentages are based, are given in Fig. 3 in parentheses).
Motivated by a desire to reflect the trend apparent in Fig. 3, we introduce

the size effect, s, as being the deviation from strength size independence. Thus
* *
s =0 1/02 -1=4% -1, (12)

according to LEFM. Examihing whether the data is in useful (+ 10%) or good (+ 5%)
agreement with s of (12) tends to remove the almost automatic agreement for low
A inherent in our check on strength predictions. The percentages of the data comply-
ing to the two degrees with LEFM's siZe prediction are presented in Table 2, simply
grouped under brittle, brittle-ductile and ductile since this is the true key
to applicability, rather than plane stress versus plane strain. Without the easy
acceptance limits for small changes of scale of the measures in Table 1, LEFM is
shown to be quite ineffective in its ability to track size dependence in Table 2.
At this point it is natural to ask if perhaps satisfactory performance of
linear elastic fracture mechanics requires a more restrictive set of circumstances
than even the most applicable admitted here. Two options along these lines are to
examine whether or not data stem from valid KIC testing, and to attempt to separate
out still more brittle behavior.

Coucerning the first, it is not trivial to ascertain whether or not data is

from valid K,. tests according to current ASTM standards [137]. The reason for

IC

this is that normally insufficient information is given in articles - we did not

come across a single paper which gave all the information required to check all
of the E399 requirements in [137]). As a result, unless we could detect an aspect

which infringed present standards, we simply took it on contributors own statements as
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Table 2. LEFM size prediction

Material No. of % within % within
response tests + 10% of + 5% of
regime involved LEFM LEFM

Brittle 802 12% 4.2%
Brittle-ductile 400 18% 9.3%
Ductile 1994 4f4% 1.8%
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to whether their data is valid KIC or not. The agreement in terms of size effect
prediction so as to avoid undue weight to low-\ values, is presented in the top
half of Table 3. It would be difficult to argue that there is any significant
improvement offered by the valid Kic data over other plane strain brittle data.
Regarding the second, to see if there is a trend towards greater agreement with

increasingly brittle response, we merely divide the same data set - plane strain,

brittle - into two. We do this by defining a very brittle regime when 0 < rY/a <0.0%

and a quasi-brittle regime when 0.01 g_rY/a < 0.02. Some of the data could not be
segregated in this way. The agreement for the remainder, in terms of size effect
prediction, is presented in the bottom half of Table 3. Again, it would be hard
to establish there being any significant improvement.

In sum then, the physical data is not in satisfactory agreement with the
strength size effects prediction of linear elastic fracture mechanics, especially
when there are appreciable changes in scale, and this unsatisfactory situation
appears to persist even when considerable effort is expended to conform with the

assumptions underpinning LEFM.

CONCLUDING REMARKS

The prediction of strength size effects in fracture mechanics concurs with
trends in physical data but is so naively simple as to.be manifestly incomplete.
Accordingly it can lead to predictions that are inaccurate to the point of not
being acceptable in engineering. Moreover, such errors are typically not conserva-
tive when testing a specimen larger than the size of the intended application. And
this situation can certainly arise in practice (recall the turbine disk example in
the Introduction).

In practice, then, it is preferable, if not necessary, to test on the same

size scale as the application. In the event of this being impractical, the following
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Table 3. LEFM size prediction for different types

of brittle response

No. of % within % within

Classification tests + 10% of + 5% of
involved LEFM LEFM

Valid KIC 190 11% 4.7%
° e

Not KIC 509 9.6% 1.4%
Very brittle 158 10% 7.6%
Quasi-brittle 349 9.5% 4.6%
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strategy might be adopted. For the most part, the size effects predicted by LEFM
are in éxcess of those for the actual data. Hence when testing small and applying
big, LEFM can be used to estimate the reduction in strength and usuaily will do

so conservatively. 6n the other hand, when testing big and applying small, the LEFM
prediction can greatly exceed.the strength increases in fact realized. Here, though,
it would appear that strength seldom decreases with decreasing size. Consequently,
on nondimensionalizing LEFM by dividing the stress intensity factor by the specimen
width at the crack to furnish a size independent parameter, allowances for size
effects will generally be conservative.

A caution on the use of the above is in order. There is reaily no physical
reasoning underlying the scheme; it is merely based on observation of the data. And
this &ata is not always confined within LEFM's prediction of size effects and size
independence so that-there is physical evidence of the strategy being nonconservative.+
Some judgement is therefore required in implementing this essentially empirical
approach.

On a more fundamental front, there is reason to be concerned about the very
basis of fracture mechanics. These concerns arise because there exist several hundred
test results for appropriately brittle behavior not agreeing with the LEFM prediction
of strength size effects. Every one of these represents data establishing a variation
in fracture toughness with size. It follows that fracture toughness is demonstrably
not a material property. Thus the use of the stress intensity factor a; the parameter

in and of itself controlling brittle fracture needs serious examination.
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same, although there are no ranges not including 01/02 = 1 in the brittle regime.
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APPENDIX

Here we tabulate all sources used together with a brief description of the
testing and the actual data taken as well as its classification. Within the tables,
sources are arranged alphabetically by author surname. For the test description we
employ the following abbreviations for specimen type: CCP...center-cracked plate,
CTS...compact tension specimen, CVN...Charpy V-notch, RCT...round compact tension,
SEN...single-edge notch, TNF...thumbnail flaw, VNC...V-notched cylinder, WOL...wedge
opening loading, 3PB...three-point bend, and 4PB...four-point bend. After specimen
type (s), there is a sequence of quantities in parenthesis which can have as many
entries as (n, r/a, T, a/W). The first, n, is always provided and is the number
of distinct tests involved in all of the data gleaned from a single source. Thus
the total n is somewhat less than the combined number of tests recorded in Table 1,
since there some tests are involved in more than one ratio and are therefore counted
twice, whereas here each is counted but once. In instances where the precise number

of tests could not be determined, n i§ a greatest lower bound. The second, r/a, is

the maximum dimensionless notch radius if in fact notches are employed; no correspondi
entry implies fatigue pre-cracks only. The third, T, indicates inclusion of data

for temperatures other than room temperature (RT); no T means all data at RT. The
fourth, a/W, shows that some of the mean stress ratios are for pairs of scaled
specimens whose only distinguishing feature is distinct a/W; no a/W means there is

no appreciable variation in relative crack length. Finally by way of explanation,
the abbreviations used in the classification are: po...plane stress, pe...plane
strain, b...brittle, b-d...brittle-ductile, and d...ductile. The tables in order

present information for steels, aluminum alloys, other metals and non metals.
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Table 4. Sources snd dats for steels

Scals Mean stress
Source snd test factor, n.lio‘ Classiticstion
Y e lo
172
Akita (7], 2.10 1.07 pe. d
3PB (4. 110} 4.20 1.08 pe. d
Andrews er a/. [8], RCT (3,T) 2.00 125 pe, b-d
Banerjee [10], ' 8.00 1.34 pe. d
CTS (4) 12.00 1.38 po. d
Batte ot o/, [12), 1.50 1.08 pe. d
SEN (8) 2.00 1.13 pe. d
3.00 1.1t pe. d
Bagley and Landes [13). 2.00 1.06 pr. d
CTS and 3PB (8,T) 1.18 pe. @
Begley snd Toolin [14]), CTS {2,T) 1.50 1.02 pe. b
Boodberg et a/. [18), 2.00 1.01 po., d
CCP (56, 1160, T) 1.05 pe. d
1.06 po. d
1.06 po, d
1.08 pe. d
1.09 [ IO ]
1.10 po. d
.11 po, ¢
4,00 1.08 pe. d
118 pe. d
1.15 pe. d
1.1% pe. d
1.18 po. d
117 pe. d
8.00 1.08 po. @
1.13 pe. d
1.18 po. d
118 pe. d
1.17 po, d
1.7 pes. d
1.18 pe. d
1.18 pe. @
122 pe. d
1.23 pe. ¢
1.25 po. d
.27 pe. d
9.00 1.04 po. o
N po. d
Brown o1 #/. [18], 2.00 1.10 pe. d
VNC (12, 1/36) 4.00 1.18 pe. @
8.00 1.18 pe. d
16.00 1.25 pe, d
Brown snd Srawley [19), 2.00 136 pe. b
4PB and SEN (57, e/wi 1.36 pe. b
1.38 pe. b
138 pe, b
1.4% pe. b
1.48 pe. b
1.51 pe. b
1.54 pe. bd
1,63 pe. b
3.00 1.82 pe. b
1.9¢ pe. b
Chel! snd Devidson [22], 1.67 128 pe. d
SEN (10, s/w) 1.45 pe, d
- 1.88 .21 pe. d
3.13 1.34 pe. d
.73 pe. d
1.91 pe. d
Chell and Gates [23). 1.88 128 pe, o
SEN (10, s/w) 134 pe. d
313 1.17 pr. d
1.54 pe. 6
Chell snd Spink [24]), 3PB (3) 4.00 1.40 pe, d
Chwistian ot #/. [25], 2.00 118 pe. b
CCP (14, 1/800. T) 121 pe. @
1.23 pe. d
1.3 pe. d
3.28 1.48 pe. d
1.83 pe, bd
4.80 1.68 pe. d
172 pes. bd
9.00 2.08 pe. d
2.24 pe. d
Clark ot o/, [27), 2.00 1.34 pe. d
CTS 29, T 136 pe. d
»y9 pe. d
d

4.00 1.43 pe.
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. Tabie 4 continued

. Scale Mean stress
Source and test factor, u.lio. Classification
o A "Iv2
5 DeSisto er o/. [30), 141 0.95 pe. 0
VNC {9, 123) 2.23 1.01 pe. d
3.8 1.09 pe. d
L4 448 1.08 pe, d
" 10.00 118 pe, d
- 14,06 m pe, d
. 22.31 1.28 pe. @
.- 31.56 1.30 pe, d
v Eisender ot a/. [31), o8 1.50 1.02 pe. d
K reported in Cheli and Gates [23], 2.00 .1 pe, d
. SEN (10, a/w) 3.00 1.20 pe. d
1.43 pe, @
Ferguson snd Sergisson [33], .25 1.10 pe. d
VNC (8) 147 0.98 pe. d
. 175 .11 pe, d
2.01 1.18 pe, d
251 1.22 pe. d
3.01 1.37 pe. d
4.02 1.55 pe, d
Greenburg ef #/. [38), 1.33 0.96 pe. b
- WOL (42,T) 1.80 1.66 pe. b
.. 2.00 0.87 pe, b
- 119 pe, b
1.26 pe. b
. 127 pe. b
- 127 pe, b
. 1.43 pe, b
> 1.49 pe, b
. 1.50 pe. b
1.58 Pe. b
1.89 pe. b
3.00 1.09 pe. b
2.26 Pe. b
N Hasofer [41), VNC (89) 1.50 1.06 pe, bd
. Hawthorne and Mager [42). CT (2.T)  4.00 .13 pe. b
Heyer and McCabe [43], 2.00 0.94 po, b
woL (9} 1.00 b-d
1.07 b-d
i 1.25 ]
Husng and Gelles [45), CTS (2,T) 2.00 1.03 pe. d
tkeca ot o/. [47], 3.00 1L pe, b
CTs 3.7 1.23 pe. b
128 pe, b
8.00 121 pe. b
K 1.722 pe, b
o 174 pe. b
- Jones and Brown [48), 1.85 1.18 peo, bd
- 3rB (17) 2.20 137 pe. b
y 3.70 1.82 pe. bd
4.07 1.40 pe. b0
Keiser snd Hagedorn [50], 2.00 121 pe. d
CYs (@) 8.00 1.47 pe. d
> Keller and Munz [58], 1.79 1.29 pe, b-d
" CTSs (a) 387 121 pe, bd
7.4 122 Pe, b-d
Klier and Weiss [87), 167 1.08 pe. @
VNC (35, 144} 1.09 pe. d
1.24 pe, d
.- 3.67 .13 pe. @
" 1.18 Pe,. d
% 1.82 pe, d
X 1.64 pe, d
- 5.00 1.04 pe. d
- 1.28 pe. d
- 1.61 pe. d
179 pe, d
Kobeyashi or &/. [68). CTS (4} 2.00 2.13 pe, bd
. Krasowsky of o/. [60). P8 (88, T) 2.00 1.00 pe. @
.' : L Pe. d
8 1.18 pe, bd
K 139 pe, b-d
1.40 pe. b
148 pe. b )
v 181 pe. b
n 5.00 .29 pe. d
. 7.80 1.87 pe. d
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Tabie 4 continued

Scale Mean stress
Source and test factor, ratio Classitication
‘s . 2z "‘Ia'
- 2
. Kuhn [62], 1.50 0.85 pe. ©
cecP (5 2.00 1.03 pe. d
. Lendes end Begley [84], 1.50 113 pe. d
CTS (8.T) 2.00 1.13 pe, @
o« 4.00 159 pe. d
N 8.00 1.88 pe, O
e : . 800 1.82 pr. d
. Logsdon {686), 1.33 1.20 pe. b
CTs 6.7 1.50 0.99 pe. b
. Logsdon [67). CTS (2) 133 1.51 pe. b
Logsdon and Begley [68), 1.50 1.03 pe, b
CTs (9.7 2.00 1.18 pe. b
" 1.85 pe¢, bd
. Lubahn [89). 1867 107 pe, @
N 3PB and VNC (46, 1/12) 1.09 pe, d
. 1.27 pe. d
. 2.00 1.01 YO
- 112 pe, 0
2.09 1.18 pe, d
2.20 114 pe, d
387 118 pr. d
: 1.24 pe, d
1.26 pe. d
1.81 pe. d
1.62 pe, d
178 pe. d
. 4.00 1.20 pe. d
i 4.38 1.29 pe, d
5.00 113 pe. @
1.1¢ pe, o
1.38 pe. O
157 pe, d
1.88 ps. 8
179 pe, d
e 2.17 pe. d
858 1.14 pe. d
- s.88 1.94 pe. d
22.32 3.37 pe. d
> Lubahn [70], 1.60 107 pe. d
. 3PB snd VNC (24, 112) 2.00 114 pe. d
-, 2.40 1.12 pe. d
b 3.60 1.20 pe. d
> 4.00 1.29 pe. d
o 5.20 151 pe. d
~ 5.33 174 pe. d
8.00 1.84 pe, d
n 9.00 2.04 pe. d
10.87 197 pe. d
o 21.33 3.36 pe. d
o Lubshn and Yukawa [71). 2,00 113 pe. d
et 3pPB (18, 1/13) . 1.14 pr. @
. 327 1.22 pe. bd
C. 4.00 1.25% pe. @
1.29 pe. d
8.00 1.83 pe, d
9.00 .77 pe. @
. 20.00 .27 pe. @
3 Mecdonald [72]. 3.00 1.08 pe. d
. CCP and 3IPB (14, o/w) 1.16 pe. d
- 21 pe. d
y 4.00 2.41 pe. d
Markstrom [73], 5.00 1.46 pe. d
cT (18) 174 pe. @
", Markstrom [74], 2,50 1.0% pe. b
. 3PB (14.T) 165 pe. b
- 4,00 1.01 pe. b
N 1.04 pe. b
c. 1.17 pe. b
" 10.00 121 pe, b
o Milne and Worthington [77), 2.40 1.14 pe. d
P8 (19 T, aw 1.18 pe. d
.. 116 pr. @
X 123 pe. O
1.23 pe. @
" .00 1.38 pe. d
3 [}

<. 21 pe.
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Tabie 4 continued

W

Scale Mean stress
Source and test factor, rato, Classification
Y "laz
Munro and Adems (79], 1.50 1.18 po. d
3PB (58) 2.00 1.38 po. O
4.00 136 pe. o
5.50 121 po. d
Mursyama er o/ {82]. 1.49 1.44 ps. bd
3P8 snd CTS (6,T) 1.52 144 Pe, d
1.59 pe. bd
Neale [83], 2.00 1.29 pe, bd
CTS (8} 4,00 1.97 pe. bd
Parker [88), ) 2.00 1.06 pe. @
ccr (9 1.10 pe. d
4.00 1.09 pe. d
8.00 1.10 po. d
1.30 po. d
9.00 1,03 pe. d
1.34 peo. @
Pascover er o/. [89). 1.50 0.96 po, @
CCP (4, aiw) 1.87 pe. d
Putstunds and Banerjee [83], 2.00 1.20 pe. d
cTs (13) 4.00 1.43 pe. d
8.00 1.73 pe. d
Roife and Novak [95]), 1.50 1.12 ps, bd
3rB (8) 1.22 pe. b
Roife snd Novek [96], 133 1.6 pe, @
4PB (6) 1.50 0.97 pe. @
1.87 1.24 pe. d
2.00 .1 pe. @
Royer er ¢/. [97), 2.00 1.41 pe. d
3PB snd CTS (9) 1.49 pr. d
4.00 136 pe. d
1.76 pe. d
1.89 pe, d
8.00 1.8 pe, @
Server et o/, [102], 2.00 1.34 pe. b
3PB (7) 2.54 136 pe. b
5.08 1.98 pe. b
Shabbits et o/. [103), as reported 2.00 .21 pe. b
in Server and Wullaert [101]. 4.00 1.13 pe. b
CTS (5) 10.00 0.84 pe. b
11.00 0.92 [- Y
Shannon et 8/. [104], 2.00 1.39 pe. bd
DEN (36) 1.40 po. d
141 pe. bd
1.48 pe. b
1.50 pe. ©
1.62 pe. o
Shearin er o/. [105) 3.00 0.83 pe, d
4PB {5, 1/10) 313 0.96 pe. d
8.00 0.79 pe. d
Shih snd Clerke [108), CTS (2) 1.50 1.08 pe. b
Soete [107), 3.00 0.98 pe. d
CCP (20, a/w} 0.98 pe. d
1.07 pe. d
$.00 1.13 pe. d
Special ASTM Committee, 20 1.06 pe. d
Third Report [108), 1.20 pe. ©
CCP (105, 1/1000) 134 pe. d
1.37 pe. b
1.39 pe. b
1.47 pe. b
1.59 ps. b6
2.80 1.08 pe. d
1.23 pe. d
136 pe. b
139 pes. bd
1.40 pe. b
3.00 133 pe. d
1.45 pe. d
1.54 pe. d
1.87 pe. d
\ %24 pe. b
.79 pe. b
2.33 pe. d
2.72 pe. b
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Table 4 continusd
Scole Mean stress
Source and test factor, ratio, Classificstion
) a.‘la2
! :
| Speciat ASTM Committee, 1.67 1.08 pe, d
\ Fourth Report [109). 1.09 pe, d
VNC (2W) 1.10 pe, d
3.00 0.98 pe, d
1.13 pe, d
1.37 pe. @
1.42 pe. d
3.67 1.08 pe. d
1.24 pe. d
152 pe, 0 i
1.78 pe. d 1
§.00 1.08 pe. @
1.30 pr. d
N 1.65 pe, d
2.00 pe, d
Special ASTM Committes, 1.50 1.08 pe, d
Fifth Report [110), 2.00 1.16 pe. ©
ccP () 3.00 1.70 pe. @
4.00 1.93 po. d
Steigerwald [111), 1.04 0.88 pe. bed
3PB and 4PB (21) 1.14 0.94 pe, bd
117 0.88 pe, bd
123 0.86 pe, bd
1.27 0.91 pe. bd
1.30 0.98 pe, bgd
138 0.99 pe, bd
172 1.16 . pe, d
2.10 1.36 pe. d
2.26 144 pe. d
2.47 1.96 pe. d
2.4 1.57 pe, d
3.24 1.65 pe, d
.62 1.75 Pe, d
3.90 1.85 pe, d
412 1.74 pe. d
Sumpter [114], Buige test (2) 8.00 1.12 po. d
Sunsmoto er a/.{115], 2.00 0.98 pe, d
CTs 129, 7. aw) 1.08 pe, d
1.3% pe, b
1.44 pe. d
1.L8 pe. d
1.65 pe. @
4.00 1.41 pe, ©
Thomes et o/. [118), 2.00 114 po. d
CCP 8. T. a'w} 118 po. d
121 po, d
1.33 po. d
We: et o/. [119), 1.20 0.99 pe. d
VNC (18, a/w) 1.25 0.98 pe, @
1.27 1.09 pe, @
1.48 1.10 pe. @
2.00 .12 pe. o
Weiss ot o/. {120), . 1.84 .21 pe. @
VNC (16) 4.21 2.30 pe. o
Weiss ot o/, [121], 133 1.01 pe, o
DEN snd VNC (18, 1/58) 1.67 1.16 pe. 0
3.20 1.02 pe. d
375 1.59 pe. @
4.00 1.01 pe. d
. 1.05 po. o
1.08 pe. o
1.12 po. d
8.00 1.8% pe. d
wens [122), 1.42 .33 pe. d
3IPE (8. 1/40) 2.01 1.00 pe. d
2.84 0.97 pe. d
4.00 110 pe. d
5.68 1.0 Pe. d
a.02 1.18 pe. d
1"ma 1.18 pe. d
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Table 4 continued
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d
1
4
]

Scate Measn stress
Source ang text factor, L UCH Classification
A a‘lcv2

c et et
PO Y S P

Wessel [123), 2.00 1.03 pe. b
wWOL (84,T) ARA] pe. b
) 112 pe. b
1.20 pe, b0 <
1.23 pe. b 1
1.30 pe, b
1.30 pe. b )
1.3% pe. b .
1.36 pe. b |
1.40 pe. b 9
1.41 pe. b .
1.41 pe, b-o i
. 1.48 pe. b
1.50 pe. b0 !
1.52 pe. b
1.56 pe. b '
1.59 pe. b \
1.62 pe, b0 ¥
3.00 2.06 pe. b h
4.00 175 pe. b )
1.83 pe. b ]
1.85 pe. b
2.14 pe. b
Wesse! er o/, [124]), 1.20 1.02 pe. D
CTS (32, T) 1.33 1.35 pe. b )
1.50 1.27 pe, b 4
.51 pe. &
167 111 pe. b
2.00 1.26 pe. b "
1.58 pe. b .
.7 pe. b
1.76 pe. b
2.50 1.02 pe. b
1.62 pe, b
4.00 0.99 Pe. b0
Wiison ef o/, 2.00 1.06 pe. @
CCP (36, T} 1.09 pe, o
1.12 pe. d
1.13 po. d
1.19 pe. ©
. 127 pe. d
3.00 1.06 pe. d
4.00 1.03 po. 8
1.12 pe. ©
1.20 po. d
1.24 po. d
1.28 po. @
pPc )} pe. d
1.33 po. d
1.34 po. d
8.00 1.12 po. d
1.13 pe. d
1.22 po. ©
1.24 po. d
1.28 pe. d
1.34 pe. G
1.3% po. d
1.42 peo. d
Winne and Wundt [127], 3.00 1.47 po. d
spinning disks (5) 1.96 po. b0 R
winr [128), CTS (10.T) - 3.00 0.95 pe. d k
1 pe, o
6.00 0.95 pe. @ 4
1.02 pe. d
s.00 1.00 pe, d
1.03 pe. @
Worthingron [129), 2.1 1.15 pe. d k
3F8 (3. 47 1.80 pe. d )
4
4
«
1
1
a4
y
I .‘:.'» S ".‘_‘. ..._‘ K
et b




Table 4 continued

Scale Mean stress
Source and test factor, ratio, Ciassification
) a:lv;
Yukswa [130]. 2.00 1.14 pe. d
3PB (58, 1115, T) 2.08 0.93 pe. d
4,00 1.09 pe. b
1.09 pe. b
1.12 pe. d
114 pe. b
1.17 pe. D
1.19 pe. b
119 pe. b
1.19 pe. d
1.20 pe. b
1.28 pe. b
1.32 pe. d
1.38 pe. b
1.52 pe. b
1.60 pe. b
1.65 pe. b
.77 pe. b
4.0% 0.98 ¢, d
9.46 0.99 pe. d
10.67 1.47 pe. b
.99 pe. b
2.07 pe. b
2.62 pe. b
2.87 pe. b
3.08 pe. b
Yukawa and McMuyillin [131), 2.00 1.81 pe. d
VNC (28, 1/16)
3.00 1.64 pe, d
1.7% pe. d
7.50 2.7 pe. ©
3.22 pe. d
Znen-Yusn [134], 1.60 1.00 pe. d
TNF (3) 2.00 1.05 pe. d
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Table 5. Sources snd dsts for siuminum siioys

—

Scale Mean stress
Source snd tes! factor, ratio, Classification
Y a‘la2
Adsms and Munro [6], 1.33 1.09 po. O
CCP and CTS (51) 1.49 0.95 po. d
1.92 1.02 po. 8
1.98 0.89 po. d
2.00 1.07 po. O
247 1.01 po. @
2.98 1.07 pe. o
3.85 1.08 po. @
3.8 1.06 po.
.77 1.17 po. d
Argy et of. 18], N 1.29 1.04 po. d
CCP ana CTS (8.T) 1.66 0.97 po. d
1.8 po. d
Bonestee! [151,TNF (2) 1.60 112 pe. d
Bradshaw snd Wheeler [17], 2.00 1.20 pe. d
as reported in Newman [B6), 1.24 pe. d
CCP (8) 4.00 1.27 po. d
1.48 pe, d
8.00 1.44 pe. d
1.86 po. d
Carman o1 8. [21]. 5.00 112 pe. d
CCP(30, 1/1000, a/w} 1.66 po. ¢
1.78 pe, d
1.82 po. @
1.96 pe. d
2.12 po, d
2.29 pe. d
2.29 po. d
2.49 po. d
Christian et a/. [25), 2.00 1.3 po. d
CCP (6, 1/500, T) 1.47 pe. ©
9.00 2.57 pe, d
2.85 po. d
Chu [26)], 1.88 1.08 pe, d
4PB (29) 1.26 pe. d
1.30 pe. d
2.00 1.29 pe, bed
1.44 pe, b-d
2.22 1.08 pe, d
1.08 pe, @
2.50 21 pe. 0
1.28 pe, d
1.56 pe. b-d
158 pe, bd
2.89 1.40 pe. ¢
3.00 1.63 pe, bd
3.33 1.10 pe, d
3.75 .31 pe. @
1.83 pe, b-d
5.00 1.87 pe, @
7.50 1.90 pe, @
Desisto et /. (30], .M 0.91 pe, d
VNC(9, 1/23} 1.58 1.29 pe, b-d
2.23 1.03 pe. b
2.24 0.84 pe, b-d
318 1.02 pe. b
4.46 1.05 pe, d
10.00 1.3 pe, d
Eschweiler and Munz [32], 1.52 1.24 pe, G
Short dbar {7} 1.2% pe, d
Forman [34] 1.20 1.00 po. 0
8s reported n Wang [99], 1.60 1.03 pe, d
CcCP (8) 2.40 1.06 pe. ¢
Frediani {35], 1.52 1.03 pe, ©
CCP (7, aiw) 1.7 pe, d
Heyer and McCabe [43). 2.00 tR R pe, b
1.13 po. b
Hudson end Lewis [46), dsts supplied 1.33 119 pe. b
by Rockwel!l Internstionsl, CTS (8) 1.67 1.37 pe, b
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Table 5 continued

Scale Mean stress
Source and test factor, rano, Classitication
A ] ,)02
Jones et a/. [49], 1.25 1.10 pe, b
WNC (141, V100, arw) AR A pr, b-d
1.0 1.03 pe. d
1.05 pr, o
1.06 Pe. d
1.16 pe, bd
1.21 pe. d
2.00 1.03 pe, @
1.06 pe. d
1.08 pe. @
1.08 pe. d
1.10 pe. @
1.18 pe, b-d
1.31 pr, b-d
1.31 pe. b-d
3.00 1.09 pe, d
1.13 pe. @
1.14 pe. d
1.38 pe, b-d
1.55 Pe. b-d
4.00 1.11 pe. d
- 1.18 pe, ¢
- 1.20 pe. d
1.64 pe. b-d
5.00 1.15 pe. d
1.25 Pe, d
127 Ppe. @
1.84 pe. b-d
Ksufman [52), 2.00 1.32 pe, b
CTS (6) 3.00 1.50 pe. b
Kautman [83), 2.13 1.17 pe. d©
VNC (18, 17147} 1.48 pe. b-d
Kaufman and Nelson [54), 1.50 1 pe. b
CTS (20} 2.00 1.16 po, b-d
117 pe. b
1.23 pe. b
1.24 pe. b-d
3.00 1.42 po. b-d
Ksufman er a/. [55], 2.13 1.2% pe. d
VNC (63, 1100} 1.38 pe. d
1.38 pe, o
Kelter and Munz [56], CTSI2) 2.00 111 pr. b-d
Khier and Weiss [57], 1.67 1.00 pe, d
UNC (13, 1/44) 3.00 0.99 pe. d
4.67 1.21 pe. d
5.67 1.07 pe. d
1.56 Pe. d
Krafft et o/.. CCP{2) 2.00 1.314 po. d
Lake [63], CTS(4) 4.00 1.79 pe, b
Lubahn [68). VNCIE 1/160} 1.30 1.29 pe, d
Morozov [78). 1.67 1.34 pe, b0
3re (19 1.36 pe. b
1.8% 1.36 pe. b
2.00 1.21 pe, b-d
2.07 1.34 pDe. D
2.22 1.28 pe. b
1.5% pe. b-d
2.52 1.43 pe. b-O
1.44 pe. b
3.03 1.46 pe. b-d
4.00 1.67 pe. beo
1.81 pe. b
411 1.76 pe, b-d
8.56 1.80 pe, b-o
Munz [B0]. 2.00 1.08 pe. bd
3PB (6} 4.00 1.24 pe, b0
8.00 1.50 pe. b-g
Neison and Ksufman [84], .33 1.09 pe. o
Ps (32) 1.14 pe, d
1.15 pe. O
1.2% pe, 0
1.26 pe. d
126 pe. d
1.33 pe. O
1.37 pe. d
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Tabie 3 continued

Scale Mean stress
Source snd test tactor, u.tio‘ Classification
Y o le
172
Neison e a/. [85], 1.33 1.10 pe. b
3PB end CTS (74} 1.50 1.07 pe, b-d
1.07 o, b-d
1.12 pe. b
1.Y4 pe. b
1.19 pe, b
.20 pe, b-d
1.21 po. b
1.28 pe, b
2.00 0.88 pe, bd
1.26 pe. b
1.28 pe, b
137 pe. b-d
1.43 pe. b
1.56 pe. b
3.00 0.94 pe. b0
4.00 0.76 pe. O
.01 pe, b0
1.07 pe, b0
Orange [B7). 2.00 1.09 po, d
CCP (24. T, aiw! 113 po. d
1.14 po. d
115 po. d
1.18 pe, @
1.19 pe, d
1.21 pe. d
1.32 po. d
4.00 1.31 pe. @
1.39 po. d
1.46 pe. d
152 pa. &
1.58 Po. d
1.863 po. d
1.80 pe. d
Poulose er a/. [91], 1.50 1.07 pe, d
CTSs (8) 1.12 po. d
2.00 1.22 pe, 0
1.65 pe, d
Poulose and Liebowitz {921, 2.00 1.03 po. d
CccP (8} 3.00 0.98 pe, d
6.00 1.08 pe, d
8.00 1.32 po, d
10.00 1.32 po. d
12.00 1.59 pe, d
14.00 1.7% pe. d
Shannon er &/. [104], 2.00 1.27 pe, b-d
DEN (22) 1.28 p¢. b-d
137 Po. d
1.89 po, d
Specisl ASTM Committee, 1.50 1.03 pe. d
Third Report [108], 2.00 1.03 pe, @
CCP and VNC (16} 1.06 pe, d
1.07 po. d
1.07 pe. d
1.20 po. d
1.20 Po, d
1.24 pe, d
1.27 po. d
2.50 113 Pe, d
3.00 1.30 Pe, d
3.20 1.38 Pe. d
4.00 1.29 pe, d
1.46 pe. d
1.49 Pe. d
8.14 1.34 Pe. O
8.00 1.87 Pe, d
2.04 Pe, d
183N 1.85 Ppe. o
Steigerwald [111], 1.43 118 Pe¢, b-d
4PB snd 3PB (16) 1.84 1.28 pr, bd
1.83 165 Pe, b0
2N 1.57 pe, b
2.93 1.66 e, bd
e 1.99 pe. b-d
4.89 2.08 Pe, bed
2.14 Pe, bd
Sullivan e 8/. [112), CTS (2 187 1,07 pe, d
Suifiven end Stoop [113), 1.67 1.18 po. ¢
CTS (13, aiw) 1.22 fo, d
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Table & continued

Scale Mean stress
Source and test tactor, 181i0, Cisssification
A ale
12
Yusuff {132], from dsta in 1.50 1.9 po, d-d
Crichiow [29), McEvily 1.36 peo. b-d
et a/. [75) and Yusuff {133], 2.00 131 po. b-d
cce (21 1.36 pe. @
1.47 pe. d
+1.47 peo. d
4.44 1.69 po. d
2.01 pe. d
2.12 po. d
2,37 po. @
8.89 2.93 po. O
Weng [117), 1.33 1.08 po. d
CCP (8, s'w! - 2.50 1.67 pe. d
3.33 1.82 po. d
Wang and McCabe [118), 1.33 1.12 po. d
CTS (5) 1.50 1.06 po. ©
3.33 1.8% po. @
Weiss er o/. {120), 1.8 112 pe. d
VNC (33} 1.80 1.03 pe. d
4.00 137 pe. d
1.80 pe, d
Zinkham [135), 3.00 1.41 po. b
ccp (18) 1.50 pe. b
Zinkham and Bsughasn [136), 1.67 1.14 pe. b
cTS (16) 1.18 pe. b
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. V » ’ Table 8. Sources I.ﬂd 'dn-o

for other matals

o Bt aae e ady 2

Scale Mean stress
] Source and tast factor, n.tio‘ Clsssiticesion
Y l‘/ﬂz
Chu [26), 1.33 0.98 Pe, d
| . _4PB snd 3PB (56) 1.67 107 pe.
| 1.18 Pe, d
2.00 1.30 pe, d
2.50 1.08 pe, d
V.15 pe. ©
1.16 pe, d
118 pe, @
1.23 pe, d
1.31 pe, ©
1.40 pe, ©
2.67 1.22 pe. @
1.28 pe. d
132 pe, d
1.41 pe. d
4.00 1.58 pe, d
5.00 1.32 pe.
1.33 pe, d
1.34 pe. @
1.39 Pe, d
1.85 pe, a
1.68 pe, d
§.33 1.64 pe. d
10.00 1.50 pe. d
1.52 pe, d
1.56 pe. d
1.68 Ppe. d
1.71 pe. d
1.86 pe, d
2.29 pe, o
DeSisto et #/. [30), 1.41 1.03 pe, d
VNC (8 1/23) 2,23 1.08 pe. @
2.24 1.19 pe. bd
3.15 1.45 pe, b-d
3.18 1.18 pe. d
5.00 1.76 pe, b-d
Gunderson [39), ss reported in 1.33 1.03 po, b-d
Newman (86], CTS (2}
Hall et o/. (40], CTS (3} 2.87 1.55 po. bd
Hifton [44), 2.50 1.38 pe. b
CTs (15) 1.40 pe, b-d
1.48 pe, b-d
Kiier and Weiss [57], 1.67 0.99 pe, d
VNC (10, 1/a4) 1.06 pe. d
3.00 0.95 pe, d
1.08 pe. d
4.67 1.00 pe, d
2.31 pe. d
5.67 1.02 pe, d
2.40 pe. d
Munz et o/. [81), 1.90 1.18 pe, bd
3re (102) 112 pe. b
2.00 1.28 pr. bd
1.3 pe. b
317 173 pe, bd
.84 1.54 pe. b
4.20 1.60 pe. b
: 7.80 2.09 pe. b
Payne [90], 3.00 1.86 po. d
CCP (8) 1.83 po. d
Repko er o/. [94), 3.00 1.10 pe. d
DEN (24) 1.48 pe. ¢
1.54 pe. d
1.83 pe. bd
Shannon et a/. [104), 2.00 1.34 pe. d
DEN (15) 144 pe, bd
1.48 pe, bd
Specia)l ASTM Committes, 2.3 1.43 pe. b
Third Report (108), 1.82 pe. bd
CCP {30, 1/1000) 3.00 1M pe. b-d
1.81 pe. d
Waeiss ot o/, [121), 2.00 136 pe. d
OEN (3, 1/45) 4,00 1.90 pe. 0
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Tabie 7. Sources and deta for nonmetals

Scafe, Mean stress
Source and test {actor, u.cioa Cisssification
A 01102
Bass:m and Hsu [11), 3PB (S} 2.54 1.08 pe. b
Buresch [20), 4PB (40, 1/11) 2.33 1.32 pe. b
Costin [28], 2.00 1.40 pe. d
3PB (12) 4.00 1.78 pe, d
Kapian [51], 2.00 1.83 pe. b
3PB end 4PB (27, aiw) 1.80 pe. b
1.9% pe, b
1.96 pe. b
2.07 pe. b
2.08 pe. b
2.08 pe. b
2.10 pe. b
2.18 pe, b
Lewis and Smith [65), 4PB (6) 2.00 2.10 pe, b
McKinney and Rice [76). 1.17 1.47 pe. b
3PB (52, 112} 1.18 1.08 pe. b
1.33 1.09 pe. D
1.44 pr. b
1.38 .21 pe. d
1.80 1.08 pe. b
1.50 pe. d
1.63 1.16 pe. b
165 1.48 pe. b
1.67 0.99 pe. b
1.74 149 pe, d
2.33 1.17 pe. b
2.87 1.28 pe. b
313 1.52 pe, b
3.20 1.3% pe. b
3.33 1.09 pe. b
3.73 1.07 pe. b
4.67 1.98 pe. b
4.80 177 pe, b
Schmidt [98), 2.04 1.18 pe. d
3PB (16, a/w) 1.28 pe. d
4.08 1.70 pe. d
Schmidt end tutz [100], 2.00 1.28 pe. d
CTS andg 3PB (22) 1.30 pe. d
4.00 189 pe. d
1.81 pe. 0O
8.00 2.46 pe. @
Weiss o 2/. [120]), 1.4 0.99 pe. b
4PB and VNC (46, 1/21) 1.44 117 pe. b
1.80 1.49 pe. b
2.18 143 pe, d
2.69 1.37 pe. b
2.84 178 pe. b
362 1.81 Y
3.98 2.08 pe. b
8.95 1.70 pe. b
8.28 263 pe. b
11,34 2.2% pe. b
witlisms snd Ewing [125), .33 0.94 po. b-d
Pressure vessels (6) 1.50 1.94 pe. b
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APPENDIX 5

SOME COMMENTS ON THE GRIFFITH-IRWIN
APPROACH TO FRACTURE MECHANICS

G.B. Sinclair
Department of Mechanical FEngineering, Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

For brittle fracture, present day linear elastic fracture mechanics (LEFM)
selects the stress intensity factor, K, as the parameter controlling damage. In
essence this choice owes its origin to the cla--ical thermodynamic or energy
argument of Griffith, and the recognition of the equivalence of energy release
rates and stress intensity factors by Irwin. While there now exist competing
explanations for justifying K as the fracture controlline quantity, the under-
lying energy argument cannot be dismissed since the use of K to predict frac-
ture implies the thermodynamic statement of Griffith, i.e. the connection is
reversible. Accordingly an assessment of the validity of the energy balance
approach is pertinent to an anpraisal of LEFM even today.

A number of commentaries on the Griffith energy argument for brittle fracture
are available in the literature and address various aspects of its consequences,
e.g. Goodier in Fracture, Vol. I1. The aspect of concern here is the size de-
pendence implied by the approach. By virtue of having an energy source term
which is one spatial dimension higher than the assumed sink, the balance always
leads to a reduction in the predicted stress at fracture for scaled :cpecimens
as the inverse of the square root of some length. More precisely, for the
uniaxial tension test Griffith's argument can be shown to result in
1
« =
% I
where o is the ultimate stress, L is the length of the specimen: while for a
cracked specimen with all its in-plane dimensions held in constant ratios to
one another it gives 1

C* « '@,
where o, is the applied stress at fracture, W is the width of the smecimen.
The question then arises as to how good such predictions are in practice. The
answer is not too satisfactory. Specifically, the first, though representing
a trend found to a limited extent in small specimens, is generally in complete

disagreement with the physical evidence of size independence for the ultimate
stress in sufficiently large specimens. And the second, on examination of over

L4




300 experimental data for brittle and quasi brittle materials drawn from some
forty odd references, is found to be complied with to within $10% by less than
% of the results. In all it would appear that the assumption of a surface-

energy-like term as the sole energy sink in fracture proccesses in solids
implicit in LEFM leads to an altogether too simple prediction of size ef-

fects - one that cannot really capture the variations in size dependence itself
with size, or the sensitivity of size effects to different materials, or the
way in which altering size by changing different dimensions enters into the
effects. One explanation which has the potential of overcoming these short-
comings is to view size dependence as being governed by a highly stressed vol-
ume and admit Weibull-like dependencies. When these ideas are appnlied to
various test geometries, including cracked test pieces, a consistent picture

of strength size effects emerges.
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APPENDIX 6

SOME COMMENTS ON THE GRIFFITH-IRWIN
APPROACH TO FRACTURE MECHANICS

G.B. Sinclair
Department of Mechanical Engineering, Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

For brittle fracture, present day linear elastic fracture mechanics (LEFM)
selects the stress intensity factor, K, as the parameter controlling damage. In
essence this choice owes its origin to the cla--ical thermodynamic or energy
argument of Griffith, and the recognition of the equivalence of energy release
rates and stress intensity factors by Irwin. While there now exist competing
explanations for justifying K as the fracture controlling quantity, the under-
lying energy argument cannot be dismissed since the use of K to predict frac-
ture implies the thermodynamic statement of Griffith, i.e. the connection is
reversible. Accordingly an assessment of the validity of the energy balance
approach is pertinent to an anpraisal of LEFM even today.

A number of commentaries on the Griffith energy argument for brittle fracture
are available in the literature and address various aspects of its consequences,
e.g. Goodier in Fracture, Vol. II, The aspect of concern here is the size de-
pendence implied by the approach. By virtue of having an energy source term
which is one spatial dimension higher than the assumed sink, the balance always
leads to a reduction in the predicted stress at fracture for scaled specimens
as the inverse of the square root of some length. More precisely, for the
uniaxial tension test Griffith's argument can be shown to result in
1

Ou @ j_i,
where o is the ultimate stress, L is the length of the specimen: while for a
crackeduspecimen with all its in-plane dimensions held in constant ratios to
one another it gives 1

« =
O* vﬁ’

where o, is the applied stress at fracture, W is the width of the snecimen.

The question then arises as to how good such predictions are in practice. The
answer is not too satisfactory. Specifically, the first, though representing

a trend found to a limited extent in small specimens, is generally in complete
disagreement with the physical evidence of size independence for the ultimate
stress in sufficiently large specimens. And the second, on examination of over
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300 experimental data for brittle and quasi brittle materials drawn from some
forty odd references, is found to be complied with to within 110% by less than
% of the results. In all it would appear that the assumption of a surface-

energy-like term as the sole energy sink in fracture proccesses in solids
implicit in LEFM leads to an altogether too simple prediction of size ef-

fects - one that cannot really capture the variations in size dependence itself
with size, or the sensitivity of size effects to different materials, or the
way in which altering size by changing different dimensions enters into the
effects. One explanation which has the potential of overcoming these short-
comings is to view size dependence as being governed by a highly stressed vol-
ume and admit Weibull-like dependencies. When these ideas are apnlied to
various test geometries, including cracked test pieces, a consistent picture

of strength size effects emerges.




On Size Etfects In Fracture

G.B. Sinclair

Department of Mechanical Engineering
Carnegie-Melion University
Pittsburgh, PA 15213, U.S.A.

Griffith's classical energy arguments [1],
vhich form the basis of modern day fracture me-
chanics, imply a dependence of fracture stress

on size. Specifically, for an in-plane scaled

specimen pair (Fig.l), in theory we have

* *
01/02 = /A 1)

*
where o;, o, are the applied stresses at frac-

ture in Specimen 1, 2 and A is the scale factor,
That is, the larger the specimen the smaller

the fracture strees. In contrast for out-of-

plane dependence, the same theory gives

* 2
°t/°T - /(1-v°), (2)

.
T

fracture stresses and v is Poisson's ratio.

®
where ot, o, correspond to plane stress, strain

The objective here is to examine how well these

predictions are actually complied with.
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Scaled crack specimens

To this end Fig.2 presents in-plane size
effects on the strength of cracked specimens
from twenty references (see [2] for details).
While some of the data lie close to equation (I)
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most do not, regardless of whether the data is
for brittle or semi-brittle material, for plane
stress or plane strain. Moreover scatter alone
cannot account for the deviations from the the-
ory (the bars in Fig.2 being 952 confidence
limits for the associated data sets). Concern-
ing thickness effects, there appears to be a
lack of data for perfectly brittle solids to
check if (2) holds. However, as is well knownm,
nonbrittle data exhibit the opposite behavior
to (2). While explanations of this trend exist
none are generally recognized as being complete.

In all, size predictions im fracture mechanics

are in some conflict with the physical data.
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By reviewing the basic arguments of frac-
ture mechanics one can establish that the ag-
sumption of a surface term being the dominant
energy sink in the thermodynamic condition for
fracture is inappropriate. The question then
arises is what is really happening in fracture
size effects. One explanation follows on as-
suming cracks are not physically too different
from other stress raisers. This enables their
physical size dependence to be made compatible
with size effects in general.

The general picture (Fig.3) of size effects
has size independent and size dependent regimes.
In the size independent regime fracture stress
takes on the material handbook value, the ulti-
mate stress Oy* This value applies when V*, the
highly-stressed volume, is big enough. Conse-
quently 1t is normally feund via uniaxial oo
sion tests wherein the entire volume can be
highly stressed. If, though, this volume is
sufficiently reduced (V*<Vu), the size dependent
regime is entered even using tensile tests (see
e.g. Fig.3). 1In this regime models, such as
those due to Weibull [3], provide reasonable
data reduction schemes for predicting the in-
creases in strength due to reductions in size.

Turning to other specimen types, if we make
the nonunique but sensible definition that v* be
the volume seeing 95i or more of the maximum
stress, we can obtain the estimates below for v’
in terms of the gross volume V:

v V(tension), via .05 V (bending),

v* » .052v(notches), v* n .05™V(cracka).
Here n is an index whose range is approximately
2n<3. As a result, bend, smooth motch, and

crack specimens, in that order, can be expected
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Fig.3. General fracture size effects
to more frequently fall in the size denendent
regime; nonetheless given sufficiently large
specimens all three eventually enter the size
independent regime (see Figs.2,3). To date we
have been able to get all data gathered to com—
ply with this explanation. Further, this inte-
pretation offers the potential of increased un-
derstanding of thickness effects.

In sum, size effects predicted in current
fracture mechanics can disagree with the physi-
cal evidence and hence are capable of causing
errors in practice, even nonconservative ones:
the explanation put forward here would seem to
be consistent with physical results and could
thus become a part of an improved technology.
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